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1 Introduction

Diffusion is one of most studied problem in nature. It investigates the transport phe-
nomena due the spontaneous spreading of mass in a defined domain. The first empirical
description of this process was formulated as the Fick’s law of diffusion [1]. Succes-
sively, thanks first to Einstein [2] and then to Smoluchowski [3], the diffusion process
was analytically modelled on the basis of previous brownian motion observations [4].

From then on, diffusion-like processes were applied to many areas, from physics to
biology [5–7]. Moreover in the last years, attention has been focused on the dynamics
of particles on specific discrete mediums, namely the complex networks. This interest
rises from the similarity between the topological properties of these structures and those
characterizing real life phenomena, such as cell compartments or traffic flow [8]. Net-
works have nowadays a central role in the modelling of physical problems, and thus the
diffusion on such environments has become an emergent field of investigation [9–13].
Most of the studies done in this area focussed on the detection of community structures
[10, 11, 14], or on the prediction of stationary patterns [15], and finally on the problem
of diffusive epidemic process in a crowded environment [16].

2 Model

In all the previously presented models, it has been hypothesized the existence of a sin-
gle walker or independent ones if many were active. In this work, we make one step
forward by studying the simultaneous diffusion of several random walkers on a com-
plex symmetric network in a crowded regime. More precisely, each individual crawler
sitting on a node obeys the standard rules of random walk, jumps to distance 1 nodes are
equiprobable, however each node can account for only a finite number of walkers (N),
namely it possesses a finite carrying capacity. This implies that the transition probabil-
ity from one node to another takes also into consideration the quantity of free available
volume in the destination nodes.



Starting from this microscopic formulation, we derive a diffusion equation charac-
terized by a transport operator that differs from the standard random-walk Laplacian
matrix, notably for the presence of nonlinear terms involving products of the density of
walkers:
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where Ai j is the Ω ×Ω symmetric adjacency matrix encoding the connections in the
network, ki =∑ j Ai j the degree of the i–th node, ∆i j =Ai j/k j−δi j the random-walk nor-
malized Laplacian matrix and the continuous variable ρi(t) represents the concentration
of particles at node i and it is related to the discrete variable ni (number of walkers at
node i) through ρi = limN→∞〈ni〉/N.

The different structure of the diffusion is directly reflected on the stationary solu-
tion: the asymptotic concentration of crawlers in each node is no longer proportional to
the degree of the node itself but it is given by a nonlinear function of the degree. We are
able to derive an analytical formula for such solution valid for any crowding conditions
and which returns the classical random walk distribution in the case of diluted systems,
namely once the number of crawlers is very small with respect to the available volume:
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where a is a parameter to be determined to satisfy the mass conservation constraint,
∑i ρi(t) = ∑i ρi(0) = M, which straightforwardly follows from Eq. (1).

3 Results

We conclude by presenting a main application of the previous theory devoted to the
reconstruction of the unknown network topology upon which the crawlers move, re-
markably enough a single node measurement is sufficient to achieve the goal. We are
indeed able to reconstruct the degree distribution p(k) using the information on ρi(t)
(with t large enough) observed on a single node and repeating s independent experi-
ments involving different numbers of crawlers (whatever the crowding conditions).

More precisely selecting a node as starting point for all the walkers, say node i = 1,
we can use Eq. (2) and get a(M) = ρ∞

1 /(1− ρ∞
1 )× 1/k1, where we emphasised the

dependence on the system mass M, i.e. the total number of walker. Let us observe that
a(M) depends only on local measurable quantities: the node degree k1 and the stationary
distribution of walkers on the node, ρ∞

1 , that one can safely assume to be know if one
waits long enough observing the number of walkers contained in node 1.

Introducing the number of nodes with degree k, n(k), we can obtain from Eq. (2)
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, (3)



performing several experiments, namely random walks with a different number of walk-
ers Mi, i = 1, . . . ,s, one can rewrite the previous relation in the following form:(M1

...
Ms

)
= F

( n(1)
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)
, (4)

where we introduced the matrix Fi j =
ai j

1+ai j and we wrote for short ai = a(Mi), that we
recall is a known quantity.

Solving this linear system for the unknown n(1), . . . ,n(kmax) we can reconstruct the
degree distribution of the network. We successfully tested our method in both synthetic
networks (see Fig. 1 for the case of an Erdős-Rény network and a Scale Free one) but
also in realistic ones (C. Elegans neural network and the karate club network, data not
shown).
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Fig. 1. Network reconstruction. Left panel: the degree distribution p(k) for an Erdős-Rény ran-
dom network made by Ω = 500 nodes and probability to have a link between two nodes p= 0.06.
Right panel: The degree distribution p(k) for a Scale Free network made by Ω = 2000 nodes
and γ = 3 built using the Barabási-Albert algorithm. In both panels the blue circles denote the
real probability distribution (i.e. computed from the knowledge of the network) while the black
squares represent the reconstructed p(k), the red line (left panel) is the asymptotic binomial dis-
tribution with parameters Ω and p, the black line (right panel) is the theoretical distribution
y∼ 1/x3.
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